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Estimates of monthly average rainfall based on satellite observations from a low Earth orbit will
differ from the true monthly average because the satellite observes a given area only intermittently.
This sampling error inherent in satellite monitoring of rainfall would occur even if the satellite
instruments could measure rainfall perfectly. We estimate the size of this error for a satellite system
being studied at NASA, the Tropical Rainfall Measuring Mission (TRMM). We first examine in detail
the statistical description of rainfall on scales from 1 to 10% km, based on rainfall data from the Global
Atmospheric Research Project Atlantic Tropical Experiment (GATE). A TRMM-like satellite is flown
over a two-dimensional time-evolving simulation of rainfall using a stochastic model with statistics
tuned to agree with GATE statistics. The distribution of sampling errors found from many months of
simulated observations is found to be nearly normal, even though the distribution of area-averaged
rainfall is far from normal. For a range of orbits likely to be employed in TRMM, sampling error is
found to be less than 10% of the mean for rainfall averaged over a 500 X 500 km? area.

1. INTRODUCTION

A significant fraction of the heating of the tropical atmo-
sphere comes from latent heat released in precipitating
clouds. The formation of rain in the tropics is thus an
important step in a process that transforms the energy in
incoming solar radiation into kinetic energy of the atmo-
sphere. Accurate estimates of the amount of rainfall in the
tropics would substantially improve our knowledge of the
workings of weather and climate, but tropical rainfall is not
very well monitored, since much of the tropics is covered by
ocean. Continuous coverage of these large oceanic expanses
is probably only feasible from space. Present-day satellite
measurements of rainfall, however, rely on relatively indi-
rect methods and are not always easy to verify quantita-
tively.

A remedy for this situation, a satellite designed specifi-
cally to measure rainfall as accurately as possible from
space, is presently being planned. It will be referred to as the
Tropical Rainfall Measuring Mission (TRMM). Simpson et
al. [1988] discuss in detail the need for the satellite and the
kinds of instruments presently envisaged for it.

A primary goal of TRMM will be to provide accurate
monthly averages of tropical rainfall within areas of the
order of 500 x 500 km?. There will be two sources of error
in these averages, broadly speaking: the error inherent in the
method used to determine rain rate at a given instant, and the
“sampling’ error associated with the satellite’s only being
able to observe a given area intermittently.

Copyright 1990 by the American Geophysical Union.

Paper number 89JD01655.
0148-0227/90/89YD-01655$05.00

The impact of the first source of error, retrieval error, may
in principle be considerably reduced by taking monthly
averages of the data over large enough areas, provided
retrieval algorithms can be developed that generate unbiased
estimates of rainfall (no small task!). The radar system
included in the TRMM instrument package, combined with
extensive ground-based verification, will help considerably
in calibrating satellite retrievals. A rough estimate of re-
trieval error is given in the appendix.

The second source of error, arising from intermittent
observation by the satellite, is determined by the orbit of the
satellite and the size of the swath scanned by the satellite as
it passes over, and by the statistical characteristics of the
observed rainfall. It is the dominant contribution to the error
in monthly averages if systematic error in the retrieval
algorithms is small. It is with this kind of error that we shall
be chiefly concerned here.

The size of this error depends on how well sampled the
area is during a month. We shall describe here a baseline
calculation of sampling error assuming that information is
available only from the TRMM satellite itself. Clearly the
error can be reduced by adding information from other
satellites or ground stations, and this will almost certainly be
attempted. One of the potential benefits TRMM offers is the
“calibration”” of infrared and microwave instruments on
other satellites so that their data can be converted into
rainfall estimates where TRMM data are unavailable.

Although we shall focus on the particular observational
configuration offered by TRMM, the methods we develop
here are obviously applicable to studies of sampling errors
for other satellite systems monitoring other geophysical
quantities.
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As a measure of error, we shall use the root mean square
(rms) difference between the actual rain rate averaged over a
month and the mean of the satellite observations during that
month. The true monthly averaged rain rate is

1 T 1
R:—J dt—f d*x rix, 1) (1)
T 0 A A

where r(x, f) is the rain rate at location x, 7 is the time since
the beginning of the month, and T and A are the period (1
month) and area averaged over.

The satellite observes the area A sporadically, at times ¢;
during the month, and does not always observe the entire
area A but only some subarea A;,

A;=fiA 2

where f; is the fraction of the area observed. If we let

d*x r(x, t)) 3)

Fi=—

A S,

be the subarea-averaged rainfall, then a satellite-based esti-
mate of the true rainfall R can be written as

M
R=2 wri “@
i=1

where M is the number of overflights of the area during the
period 7, and w; are factors that might in principle be
adjusted to improve the estimate R as much as possible,
depending on the spatial and temporal correlations of the
rainfall. Here we shall simply assume that each observation
at each point in the area is to be given equal weight, so that
the factors w; are just proportional to A;,

M
wi=fi/ 2 f (5)

i=1

They have been normalized to given an unbiased estimate of
R.

The rms error E can then be written in terms of these
definitions as

E*=(R-R7 ©)

where the angle brackets indicate an average over an ensem-
ble of possible histories of rainfall during the month. The
error E represents the typical size of errors in satellite
estimates of monthly averaged rain over many months of
observations or over many climatologically similar areas.
Implicit in using rms error is the idea that the errors R — R
might be approximately normally distributed with standard
deviation E. We shall find that this is the case in our
simulations, even though the instantaneous area-averaged
rainfall is far from being normally distributed.

The rms error E in (6) is in principle completely deter-
mined by the covariance statistics of point rainfall. It is a
difficult and subtle task, however, to extrapolate the statis-
tics obtained from rain gauges to the area and time averages
needed in (6) because the spatial and temporal variability of
rainfall is so extreme. The areal coverage provided by radar
is more nearly comparable to the averaging areas to be used
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for TRMM, but weli-calibrated data from the tropical oce-
anic regions are not easy to find. In the study presented here
we have in fact limited ourselves to radar data collected in
the Global Atmospheric Research Program Atlantic Tropical
Experiment (GATE) during the summer of 1974. This pau-
city of tropical radar data should be ameliorated in the near
future as ground-based experiments associated with TRMM
get under way.

An early attempt at obtaining £ was made by Laughlin
[1981], who estimated it for a satellite that visits the area at
equal intervals At and views the entire area each time. He
was able to write E?> in terms of the variance of the
area-averaged rain rate o , and of the correlation time of the
area-averaged rain rate, 74, as

E?= (rif(At, T4, T) )]

His derivation is reviewed by Shin and North [1988], who
have improved on his method by taking into account the
actual visit times of the satellite and fractional coverage of
the visits. They make the approximations that the statistics
of area-averaged rainfall not depend on the size of the area
averaged over, and that repeated visits occurring less than a
few hours apart be counted as a single observation. The first
approximation tends to lead to underestimates of the error,
since rainfall in smaller areas has greater variance and
shorter time scales than rainfall averaged over larger areas.
The second approximation, however, tends to overestimate
the error.

Our approach here will be to simulate the rainfall over an
area with a statistical model, and to ““fly’” a satellite in a
TRMM-like orbit over the simulated rainfall, computing the
rms error (6) from multiple trials each a month long. The
rainfall model is adjusted to have spatial and temporal
variability with covariance statistics matching those ob-
served in GATE. Some choices must be made in extrapolat-
ing the GATE results to spatial and temporal scales larger
than those of GATE, and will be discussed here. These
choices affect the size of E.

The advantages of the Monte Carlo approach are that it
offers a covenient vehicle for including in the calculation of
E the effects of the dependence of rainfall statistics on the
fraction of the area observed by the satellite during a given
pass; and it gives some insight into the probability distribu-
tion of errors. The disadvantages are that it gives results
whose accuracy depends on the number of months in the
simulation and, as always, the results depend on the ability
of the model to capture the relevant statistics of real rain.

We find that, for the cases we have studied, Laughlin’s
[1981] original method gives a fair account of the error, at
least for areas near the equator, where the satellite observa-
tions are roughly equally spaced in time and his calculations
are applicable, and Shin and North’s [1988] extension seems
to underestimate E by only 10% or 20% (of E).

In section 2 we review the sampling characteristics of the
satellite. Section 3 contains a brief description of the rainfall
model. Section 4 describes the model parameter choices
made in extrapolating rainfall statistics to the climatological
scales of interest. Section 5 describes the Monte Carlo
experiments. Sampling error estimates are given in section 6,
and their probability distribution is explored in section 7.
Further discussion and conclusions are offered in section 8.
The impact of retrieval error is evaluated in the appendix.
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2. SAMPLING CHARACTERISTICS OF THE SATELLITE

The sampling error E defined in (6) depends on the
sequence of satellite observing times #; and observed sub-
areas A;, since this sequence determines the accuracy of the
estimate R in (4). In generating sequences typical of the
TRMM satellite, it was assumed that the orbit of the satellite
would be nearly circular and that the deviations from a strict
Keplerian orbit would be mostly accounted for by including
the effects of the Earth’s quadrupole gravitational field,
which are to modify the orbital period slightly and to cause
the orbital plane to precess. The parameters of the orbits are
calculated following the procedures described by Brooks
[1977]. A summary of these procedures is given by Shin and
North [1988].

The viewing characteristics of the satellite are assumed to
be similar to those of the electrically scanning microwave
radiometer (ESMR) flown on the Nimbus V satellite. The
ESMR measured the intensity of microwave radiation at
19.35 GHz in 78 fields of view (FOVs) during each scan of
the instrument. The instrument scanned perpendicularly to
the direction of the satellite motion, from 50° to the left of
nadir to 50° to the right of nadir, requiring 4 s per scan. The
beam widths of the FOVs (at —3 dB) ranged from 1.4° x 1.4°
near nadir to 1.4° X 2.2° at the 50° extremes [Wilheir, 1972].
The FOV was defined to include all grid boxes of the rainfall
model (4-km boxes) near enough to the center of the FOV
that an exponential fit to the antenna response at the grid box
center exceeds —7 dB (about 0.2 of the power received on
the antenna axis). With this (perhaps slightly liberal) choice,
the FOVs overlap substantially, and nearly complete cover-
age of the area within the view of the satellite is assured. It
implies that in our calculations the effective size of the swath
extends to about 54° on either side of nadir.

As an example of the sampling characteristics of such a
satellite, we plot in Figure 1 the times during 1 month when
the satellite is able to view any portion of a 500 X 500 km?
box centered at either latitude 5° or 25°N. The satellite is in
a 35% inclination orbit at 350-km altitude. The plots illustrate
two features of low-inclination satellite orbits: (1) sampling
times vary with the local time, so that the complete diurnal
cycle may be explored during 1 month, and (2) for regions
near the equator the observations are nearly equally spaced
in time; at higher latitudes the observations increase in
number but are bunched together in time so that a long
period with no observations occurs each day.

The whole of the box is not seen each time, but only some
fraction f;. As a measure of how many times per day a given
point in a box is observed, consider the average

1 M
f=1lm = 2 f; (8)

Tt o)

which is shown in Figure 2 as a function of latitude for the
same orbit as for Figure 1. Here M is the number of
observations of the box during the interval T. Figure 2
reveals that at latitude 5°N, even though there are several
encounters with the box per day, only slightly more than half
the box is seen on any one visit, on average. At the very
highest latitudes the satellite is able to view only the south-
ernmost (or northernmost, depending on the hemisphere)
portion of the 500 x 500 km? box.
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Fig. 1. Viewing times of a 500 x 500 km? box during I month
for a satellite with orbital inclination 35°, altitude 350 km, and
scanning 54° to the left and right of nadir. (Top) Box center at 5°N
and (bottom) box center at 25°N.

3. MODEL DESCRIPTION AND STATISTICS

The model we use in our rainfall simulations is described
in detail by Bell [1987a]. We summarize its features here
briefly.

The model generates a field of rain rates on a grid, the
value at each grid point representing the rain rate averaged
over the surrounding grid square. The field evolves in time.
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Fig. 2. Mean number of observations per day of points in a 500

X 500 km? box, averaged over the box, as a function of the latitude
of the box center, for the satellite orbit of Figure 1. See (8).
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The distribution of nonzero rain rates generated at any one
grid point is lognormal in the current implementation of the
model. (Properties of the lognormal distribution are re-
viewed by Aitchison and Brown [1963].) The fraction of time
that it rains, and the mean and standard deviation of the
logarithm of nonzero rain rates, must be supplied. These
parameters determine the time-averaged statistics of rain
rate at each grid point of the model. The fraction of the area
with nonzero rain varies from moment to moment as the rain
field evolves.

The model should generate rain rate fields with spatial and
temporal covariances that agree as well as can be managed
with those found in nature, since the error (6) is entirely
dependent on these statistics. The model requires that these
statistics be supplied, and the choices made for them will be
discussed in section 4.

The model is based on the possibility of generating a
correlated field of variables that are multivariate Gaussian,
by the standard technique of expressing it as a sum of
uncorrelated Fourier components,

g(x) = 2, alk) exp (k%) 9)
k

where x labels grid points on an N X N grid,

0=m;=N—1 (10)

x = (my, my)

with some specified spacing (4 km in our simulations) and
m;, 1= 1,2, are integers. The components of the wave vector
k (0 = k; < 2m) take values that are multiples of the
frequency 27/N. The product k x denotes kqx; + k»x,. The
transformation (9) can be carried out very rapidly numeri-
cally using ‘‘fast-Fourier transform’’ (FFT) methods that are
commonly available on mainframe computer systems.

The real and imaginary parts of the coefficients a(k) are
uncorrelated Gaussian random variables (uncorrelated ex-
cept for the constraints required to generate only real g(x)).
The variances of these random coefficients depend on k and
are determined by the spatial correlations of the field g(x) by

(aia) = N2 2 ¢i(x) exp (—ik'x) (1

X
where c,(x) is the correlation of g at two grid points
separated by x.
Rain rates r(x) are obtained from the Gaussian variables
g(x) with a transformation R,

r=%(g) (12)

where R is 0 for values of g below some threshold gq (chosen
so that the probability of generating zero rain rate
(r = 0) agrees with observed probabilities) and increases
smoothly from 0 for values of g > g, in such a way that the
rain rates generated are lognormally distributed when the
variable g is normally distributed (g is assumed to have mean
0 and variance 1). A rough physical interpretation of the
model might be that the field g(x) represents a horizontal
convergence field or vertical velocity field, and rain occurs
where the convergence is sufficiently strong.

Since it is the spatial covariance of the rain rate r(x) that is
specified rather than the correlations of the field g(x), the
correlation ¢, (x) must be adjusted so that it generates the
desired rain field covariances. This can be done and is
described by Bell [19874a].
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Correlations in time are introduced by generating time-
dependent coefficients a(k, 1) with a first-order autoregres-
sive process with correlation times 7 that depend on wave
vector k. This is the one feature of the model that is not
straightforward to tune to agree with correlations observed
in rainfall data. We shall describe how these correlation
times were chosen in the next section, after discussing the
choices made for the other parameters in the model.

4. PARAMETER VALUES OF THE MODEL
BASED oN GATE

We discuss here the actual parameter choices for the
model. They are based on statistics obtained from radar data
collected during GATE in the tropical Atlantic in the vicinity
of the Intertropical Convergence Zone (ITCZ). The data
were converted into gridded rainfall values on a 4-km grid by
Hudlow and Patterson [1979]. Although the data were taken
well off the coast of Africa, their statistics may be affected by
easterly waves coming from the continent [e.g., Houze and
Betts, 1981], and it is not easy to say whether they are typical
of mid-ocean rainfall statistics. Nevertheless, for lack of any
comparable data set in the tropical ocean environment, we
shall base our model parameters on GATE statistics.

The model grid is given the same spacing as the gridded
GATE data, 4 km. One could in principle use a coarser grid,
with suitably altered statistics, to make the model computa-
tionally faster. The number of grid points in the simulation,
N in (10), is best set at some power of 2, in order to take
maximum advantage of the FFT algorithm, and so the
simulations are carried out with N = 256. This means that
the model generates 1024 x 1024 km? rain fields, which,
however, must be divided into four quadrants because of the
periodicity inherent in Fourier synthesis (see Bell [1987a] for
further discussion). The model thus generates four rain
fields, each 512 % 512 km? in size on a 4-km grid. Each
300-day simulation, with a I-hour time step, requires 20 min
on a Control Data Corp Cyber 205 computer.

4.1. Point Statistics

With the model resolution determined, we must next
specify the parameters of the mixed lognormal distribution
for rain rate at any grid point. These are taken from a study
by Kedem et al. [1990] of the GATE data, who find that the
lognormal distribution fits gridded rain rates » > 1 mm/h
quite well. Since rain rates r < 1 mm/h account for only a few
percent of the total rain volume in GATE, and the accuracy
of these low rain rate data themselves is in any case not easy
to assess, we shall assume the lognormal distribution applies
to all nonzero rain rates. Kedem et al.[1990] fit the GATE
data sampled at different spatial and temporal intervals; we
use parameters from their most densely sampled study of the
GATE phase I (June 28 to July 16, 1974) period. The
parameters are given in Table 1. Here p is the fraction of
time it rains at a grid point, and the mean p and variance o’
of In r define the lognormal distribution.

Using these parameters, we can calculate the expected
mean and variance of the rain rates, at 4-km resolution,
generated in our simulations:

(ry = pe™ " 77 = 0.445 mm/h (13)
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TABLE 1. Parameters of the Rainfall Model Used in Simulations
Parameter Value Comment
Grid spacing 4 km
Simulation area 512 x 512 km? per quadrant
Grid point rain statistics p = 0.083 probability of rain
w=1.13 mean of In » for r > 0
o =1. variance of In r for r > 0
Spatial correlation exp (—slay) a;=1.193
=4k As) = ——— = —
(s = 4 km) ) = T g 4= ~2.165
a; =0.2902
ag = 78.11
Temporal correlation T = 21 (27/512k) 09 hours
(correlation times for ay) Te=g = 21 hours

Note that the time scales 7 describe the Gaussian field g, not the rain field r.

var (1) = p%e® 720" — (2= 7.0 mm¥h?  (13b)

4.2. Spatial Correlation

The spatial correlation of the Gaussian field g(x) is needed
(11), and to obtain that we need the spatial correlation of
GATE rainfall. The largest square area that fits within the
400-km diameter GATE area is 280 km on a side, scarcely a
third of the 512 X 512 km? area of our simulation. Some
extrapolation to larger scales will thus be necessary. Corre-
lations have been computed for phase I and phase II (July 24
to August 15, 1974) of GATE, assuming that the correlations
are homogeneous over the GATE area and isotropic (inde-
pendent of direction), so that spatial and directional averag-
ing could be used to reduce the sampling errors in the
correlations. The true correlations are probably not perfectly
homogeneous or isotropic, but since we are calculating
satellite sampling error averaged over an area that is not
highly elongated, using statistics averaged over a large area
and all directions is a good first approximation. Anisotropy
and inhomogeneity effects are more serious considerations
in developing statistical interpolation procedures for rainfall
data.

The spatial correlations are plotted in Figure 3 as a
function of separation s, as well as two analytical fits to the
GATE I correlations. The fit labeled A in Figure 3 is given in
Table 1 and is used in the simulations. The curve labeled B
is very nearly a power law: it is fit to the correlations for s =
72 km, and is given by Bell [19874] as

c{s) = (0.25s + 0.63682) "%  s=4 km (14)

A careful study of the statistical uncertainty in the correla-
tion at s = 80 km indicates that the correlation at this
separation is known to an accuracy of +0.1 (95% confidence
limits). It is therefore not clear whether the two GATE
phases have significantly different spatial correlations. Since
both GATE phases seem to yield correlations that fall off
faster than the power law fit for large s, an exponential factor
with an e-folding scale of about 80 km is included in the
analytical fit, as indicated in Table 1.

It was mentioned in the introduction that Laughlin [1981]
derived the error E for the special case of uniform sampling
of an area and found it was proportional to the rms area-
averaged rain rate, o4, as shown in (7). Since o4 governs
the overall scale of E, it is instructive to compare the
variance of area-averaged rain rate found in GATE with

what the rainfall model will generate. The latter can be
obtained analytically.
If we denote the area-averaged rain rate for the model by

(15)

= Iz r"x)AA

ra
xXEA
where the sum is over all grid points within the area A = L?
and AA is the area of a grid box, A4 = 16 km?, then we can
write the variance of the area average (15) in terms of the
rain correlation as

(N—=Im )(N—1m>»l)c{m) (16)

where c,(m) is the correlation of rain rates at two grid points
separated by m, and

N =L/{4 km) 17

so that L? is the number of grid points in the area A.
Equation (16) is the discrete two-dimensional analog of the
equation for the variance of time averages discussed by
Leith [1973].

Using GATE data for phase I, o} was computed for
various sizes of A (results courtesy of A. McConnell and L.
S. Chiu, private communication, 1987). To reduce sampling
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Fig. 3. Spatial correlation of gridded GATE rainfall for phases I

and I as a function of separation s. Curve A shows the analytical fit
employed in the simulations, given in Table 1. Curve B shows a
near-power-law fit (to data for s < 72 km) given in (14).
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Fig. 4. Variance of area-averaged rainfall for GATE phase I as
a function of the size of the area A = L2. The error bar on the point
at I = 280 km shows the 95% confidence limits assuming normal
statistics and an 8-hour correlation time, and is therefore probably
too small. The point for the largest area is actually for the entire
400-km-diameter GATE area, assigned an equivalent value of L =
350 km. Curves A and B show the predicted variances based on (16)
and the two spatial correlation fits in Figure 3.

errors for a given size of A, variances obtained for areas
centered on many different locations within the GATE
region were averaged together. The results are shown in
Figure 4. The variances shown here differ from those re-
ported by Laughlin [1981] because of the average over many
locations of A. Also shown in Figure 4 is the estimated
uncertainty in aﬁ for L = 280 km, with the error bar
indicating 95% confidence limits. This estimate is based on
the assumptions that r,(t) is normally distributed and has a
correlation time of approximately 8 hours (discussed later in
this section). The assumption of normality is not a very good
one, as we shall see, and so this error estimate may be too
small.

Superimposed on the GATE 1 results in Figure 4 are
curves obtained using (16). The curve labeled A is based on
the statistics specified in Table 1. The curve labeled B uses
instead the correlation given in (14) but the same lognormal
point statistics [i.e., the same var (r)]. Note that the two
extrapolations to the scale of interest to us (L = 512 km) lead
to values of ¢4 differing by a factor of 1.7. This implies that
if we were to use the approximate power law fit (14), we
would estimate E to be perhaps 1.7 times as large as what we
shall obtain. Note too that even at these scales the variance
o3 is not falling off as fast as 1/4, as would be the case if
there were less spatial correlation.

4.3. Time Correlation

We turn next to the specification of the time correlations in
the model, which are governed by the time correlations of
the coefficients a(k, 7) in (9) for g(x, £). (Time correlations of
the model on small scales are also affected by overall
advection of the rain field with a speed of 4 m/s, introduced
to match typical advection speeds observed in the GATE
region [Houze and Cheng, 1977].) It is not straightforward to
relate the time correlations of the rain field r(x, ¢) to those of
the field g(x, 7) because of the effect of the intervening
nonlinear transformation % in (12). Using Newton’s method,
however, we can reproduce the time correlations of the
GATE data as accurately as we like within the constraints of
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Fig. 5. Lagged correlations for model (curve) and GATE phases

I and 1I (solid and open circles) for rainfall averaged over 280 x 280
km? area.

using an autoregressive process for time evolution of the
model.

Rather than examine the time correlations of Fourier
amplitudes, we shall use the lagged correlations of area-
averaged rain to reflect the scale dependence of correlation
times. We shall define the correlation time to be the lag for
which correlation drops to 1/e =~ 0.37, rather than by fitting
the lagged correlation to an exponential, as Laughlin [1981]
did, or by using the correlation for the smallest nonzero lag
to obtain the standard first-order autoregressive (AR(1)) fit to
the lagged correlations, which would be the optimal proce-
dure if the time behavior were exactly AR(1). Our approach
is less sensitive to whether the lagged correlations are
precisely exponential in behavior, yet produces the charac-
teristic time scale of the process. The time scales we obtain
do not differ substantially from Laughlin’s [1981], in any
case.

An example of the lagged correlation of r4(f) for the
largest GATE area (L = 280 km) is shown in Figure 5 for
phases I and II. The correlation time for GATE I is estimated
to be approximately 7.7 hours. The lagged correlation of the
model is also shown and will be discussed later. Correlation
times obtained from analyzing GATE I data for three sizes of
area A are plotted in Figure 6, with error bars representing
95% confidence limits. The error bars were obtained assum-
ing that 7, behaves like an AR(1) process with Gaussian
statistics, and may therefore err on the small side. Note that
the time scales range from a half hour to nearly 8 hours in
GATE. The model results, also shown in Figure 6, will be
discussed below.

In order to establish the time scale to associate with each
coefficient a(k, 1) in the model, we shall assume that the time
scale is a power of k = kI,

= ck™? (18)

and adjust the parameters » and ¢ until the model’s 7, agree
with those in GATE. The parameter values that result are
given in Table 1. Figure 5 shows the correlation behavior of
the model for a 280 x 280 km? area, which agrees well for
lags near 7, = 7.7 hours but indicates that the GATE data
might be better described by higher order autoregressive
processes. We have nevertheless not attempted to use a
higher order AR process to improve the fit, since it is difficult
to justify the effort, given the length of the GATE time
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Fig. 6. Correlation times of area-averaged rain, based on lag
when correlation has decreased to 1/e, as function of area size L.
Model values are based on a 300-day simulation. GATE values are
from the 18 days of phase I. Error bars for GATE values show 95%
confidence limits assuming a first-order autoregressive process with
Gaussian statistics.

series, and the neglect of the slightly higher correlations for
small lags only means that our estimate of E will err on the
conservative (large) side. v

Figure 6 shows the range of correlation times for different
area sizes, and a power law fit

T4 =0.394 L0 (19)

through the model data. The model is evidently capable of
reproducing the range of time scales found in rainfall data.
Note that, in effect, it also serves to extrapolate the GATE
results to the larger area (L = 512 km) of interest to us. The
model value of 74 for this area was found to be 10.6 hours
and the variance ¢} = 0.177 mm?/h?.

5. MONTE CARLO METHOD OF OBTAINING E

Once the statistical properties of the model are deter-
mined, a Monte Carlo estimate of the rms error (6) is in
principle obtained by simulating many months of rainfall,
and computing the rms difference between the satellite
estimate (4) and the true mean (1): If we let R and R‘® be
the estimated and true mean rain rate during month «,
respectively, and define

AR = Rla) _ pla) (20)

to be the error for that month, a Monte Carlo estimate of E
based on N simulated months would be

E*= . g: (AR'®)? €3]
N,
and the standard error of this estimate would be
o(E?) = : ~—5 {var [(AR'®)?}12 (22)

The Monte Carlo accuracy is proportional to N~ 2. 1t is
possible to increase the accuracy of the Monte Carlo calcu-
lation by estimating the rms error £ for 6-day averages
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instead of for 30-day averages, based on the following
argument.

In Laughlin’s [1981] derivation (reviewed by Shin and
North [1988]), the sampling times #; in (3) were assumed to
startat t = 0, with t; = (i — DA, i = 1,---, M, T = MA¢.
If instead we assume that the sampling starts at z = (1/2)Az,
sothat t; = (i — 1/2)At, and repeat Laughlin’s calculation, we
obtain an expression for the error E of the form

TA T
F2=g%- 2 <L1 +1, —A> + O~ T 23)
T T
with
Arl+r
L =— -2 (24a)
TA 1 —Fr
Al‘ r1/2 2
L,= —2(1 -— ) (24b)
TA 1 —r
r=exp (—At/t,) (24¢)

If typical values for At in the range 12-24 hours and 74 =
10.6 hours are used to evaluate L,/L{, the ratio is found to be
well under 0.1. Equation (23) implies that for sampling
typical of TRMM the mean square sampling error EZ scales
with averaging time T as

E?~UrT (25)

to an accuracy of a few percent or better for T = 6 days. We
make use of this by dividing the sampling pattern of the
satellite during a month into five 6-day periods with the
division points occurring well away from satellite observa-
tion times. We then estimate the error E” for each 6-day
period using Monte Carlo methods, average the errors
together, and scale down by a factor of 5 as (25) dictates, and
thereby obtain the error E? for 30-day means. By using this
device, we are able to get 5 times as many samples from a
given length simulation and so reduce the Monte Carlo error
given in (22) by a factor of 52, at the expense of a slightly
more complicated analysis of the results.

Since the model generates four rain fields (the four quad-
rants of the 1024 x 1024 km? grid) with each time step, the
error E? is calculated from the average errors found for each
quadrant. The four quadrants are not completely indepen-
dent, due to spatial correlation across the boundaries, and so
the Monte Carlo error is not reduced by a simple factor of
4 but by something smaller. The effective number of
independent samples available from the four quadrants was
estimated by comparing the variance among the four quad-
rant results in each 6-day sample with the variance in the
results from any single quadrant. Uncertainty estimates in
the Monte Carlo results presented in the next section are
based on the product of the effective number of independent
samples provided by the four quadrants and the number of
6-day samples entering into the average (20).

6. MONTE CARLO RESULTS

The model was tested to verify that its output statistics
agree with those specified in Table 1. To test the Monte
Carlo method, a calculation of the sampling error for 7 = 30
days, following the procedure outlined in the previous
section (i.e., based on 6-day samples), was carried out
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assuming observations every 12 hours of the entire 512 X 512
km? area. The Monte Carlo estimate from a 300-day simu-
lation agreed with Laughlin’s analytical result to within the
uncertainty (22).

The sampling error associated with TRMM-like satellite
observational patterns was first obtained for 30° inclination
satellite orbits at two altitudes, 300 and 450 km. The error £
was evaluated for rainfall averages over 512 X 512 km?
boxes centered at two latitudes, 5°N and 25°N, assuming
GATE-like statistics as specified in Table 1 at both locations.
The observational patterns of the satellite were obtained for
a 30-day orbit, calculated as in section 2, and broken up into
6-day periods with the break points well away from the times
when the clusters of satellite observations (illustrated in
Figure 1) occur. For the 25° latitude box, the sampling
patterns (both altitudes) in each period were similar enough
that the error EZ was computed from a 300-day Monte Carlo
run sampled according to a single representative 6-day
period. For the 5° latitude case, the error E? was computed
from the average of the errors found for each of the five
periods in the month, using 60-day Monte Carlo simulations
for each. The average error E° for a 6-day period was then
scaled down by a factor of 5 to obtain an estimate of the
30-day sampling error, as described in the previous section.

Results are plotted in Figure 7 as a function of altitude,
with a power law interpolation between the estimates at the
two altitudes. The shaded area indicates o limits from (22),
converting the uncertainty in E? to the uncertainty in £ using
the relation

oE) = c(EDRE (26)

valid for small normally distributed deviations about the true
mean (i.e., o(E) << E). The error E is expressed as a
percentage of the mean () = 0.445 mm/h.

The errors decrease with altitude because the areal cov-
erage of the satellite observations increases with height. The
error decreases more quickly for the 5°N box because at 300
km the satellite observes on average scarcely half the box
every 12 hours, whereas at 450 km it is observing more
nearly the whole box every 12 hours; for the box at 25°N the
extra information obtained from the higher orbit is not as
valuable, since the extra observations all occur within a few
hours of observations already available from the lower orbit
(cf. Figure 1), and there is still a large observational time gap
each day.

A similar Monte Carlo calculation was carried out for a 35°
inclination orbit at 350-km altitude, which may be nearer the
best orbit for TRMM [Simpson et al., 1988], for boxes at the
same two latitudes. For this orbit the sampling error found
was

E(53°N)/{(ry= (8.3 = 0.7)%
EQ5°N){ry= (7.2 = 0.5)% (27b)

(Uncertainty is *¢.) The error at 5°N is not appreciably
changed by the increase in the orbital inclination. The error
at 25°N is slightly reduced, presumably because the satellite
samples are spread out over a greater portion of the day.

A crude idea of the sensitivity of the sampling error
estimates to the various parameters can be obtained from the
Laughlin-type estimate, (23)-(24). In the limit Az => 74,
L, =~ At/7, and

27a)

E?~ g3AT (28)
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Fig. 7. Estimated rms sampling error for monthly averaged

rainfall over a 512 X 512 km? area observed by a satellite in a 30°
inclination orbit, as a fraction of the mean rain rate (r) = 0.445
mm/h, for areas centered at latitudes 5°N and 25°N. The shaded
areas denote = o confidence limits determined by the 300-day Monte
Carlo experiments.

The variance of area-averaged rain rate can be approxi-
mated, from (16), as

ai ~var (A~ fL sc,(s) ds 29)
0

where A = L* and ¢,(s) is the spatial correlation of rain rate
at points separated by distance s. The variance of rain rate in
4-km grid boxes, var (#), is approximately pa(r > 0), where
o2(r > 0) is the variance of rain rate over rainy areas only,
and p is the average fraction of the area where it is raining at
any one instant. Combining these approximations, we see
that sampling error, expressed as a fraction of the mean rain
rate ¥ = pF(r > 0), is

E 1 or>0) (L4 " /a\"?
FopEr>0 \ A T

where L, is the ‘“‘correlation length”’

. 12
f sc,(s) ds
0

which would be independent of L for large L if spatial
correlations decrease fast enough. Thus the percent error
grows as p or the averaging area A or averaging time T
decreases. The sampling error is relatively insensitive to the
correlation time 7,4, at least for Az >> 7, but decreases with
either At or 74 more rapidly than (30) indicates for Az = 74.
Note that the dependence of sampling error on how much of
the area is viewed by the satellite (that is, the values of f; in
(2), which are determined by the satellite orbit and viewing
angles) is not captured by the approximation (30).

(30)



BELL ET AL.: SAMPLING ERRORS FOR SATELLITE-DERIVED RAINFALL

80

60

Counts

40

20

|
|
|
0.15 0.25 0.5 1 2
Rain Rate (mm/h)

Fig. 8. Histogram of instantaneous rain rate averaged over 512
x 512 km? of the model. The samples are taken every 10 hours from
a 300-day simulation, for a total of 720 samples. The bins are
uniformly spaced in In #, starting at In » = —1.91 with spacing 0.3.
The solid dots show the expected counts for a lognormal fit, with
parameters {In r) = —1.016 and o(ln r) = 0.776.

7. PROBABILITY DISTRIBUTION OF ERRORS

The usefulness of the rms error estimate E depends
somewhat on the probability distribution of the errors. If the
errors are normally distributed, one expects the error for a
given month’s estimated rain rate to be smaller than 2E, 95%
of the time. Rainfall is notorious for its highly skewed
distributions, however, and normality of the error distribu-
tion cannot be taken for granted. In fact, it seems that while
rain rate is not normally distributed, the errors may be.

We show in Figure 8 the distribution of instantaneous
rainfall averaged over a 512 x 512 km? of the model, from a
300-day simulation sampled every 10 hours in order to obtain
relatively independent samples. Since only 5% of the total
rain comes from area-averaged rain rates less than 0.15
mm/h, we show only the portion of the histogram for rain
rates above 0.15 mm/h. The histogram bin sizes are logarith-
mic (note horizontal axis), so that if the rain rates were
lognormally distributed, the histogram would appear Gaus-
sian in shape. Since the samples are taken every 10 hours
and the correlation time is 10.6 hours, the samples may be
considered nearly independent.

A Gaussian fit to the histogram is shown by the dots on the
figure; the agreement of the two as measured by a chi-square
test is excellent. A lognormal distribution thus seems to
describe area-averaged rain rate well, as least for rain rates
that contribute significantly to rain volume. Although the
model is forced to generate lognormally distributed rain on
the scale of the grid squares, the spatial correlation in the
model seems sufficiently strong to extend this behavior out
to much larger scales. The central limit theorem might have
suggested that the statistics of large-area averages would
tend toward a normal distribution; and this would certainly
have been the case had there been no spatial correlation.
There may be a tendency for the largest rain rates to occur at
slightly less than the frequency predicted by the lognormal
distribution. Low rain rates, not shown in the figure, tend to
occur more often than a lognormal distribution would pre-
dict. In any case, there is little doubt that instantaneous rain
rates, even averaged over a 512- km box, are far from being
normally distributed.

The error histogram for the difference between satellite-
inferred monthly averaged rain rate and the.true rain rate
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Fig. 9. Histogram of errors AR of satellite estimates of 30-day
averaged rain rate (20) for a satellite in a 30° inclination orbit at 300
km, observing a 512-km square at 5°N. See text for details. Ex-
pected counts for each bin for a normally distributed variable are
indicated by the dots. The parameters of the fit are (AR) = 0.004
mm/h and o(AR) 0.043 mm/h.

(20) is shown in Figure 9. These values are for a box at 5°N
viewed by a satellite in a 30° inclination orbit at 300-km
altitude. As was described in section 5, the simulations
actually generated errors for 6-day averages and were com-
bined to give 30-day errors. The histogram in Figure 9 is the
result of a similar process; a month of satellite observations
was divided into 5 periods, each 6 days long, as described in
section 5. Given each 6-day period, with its corresponding
satellite sampling pattern, rainfall was simulated by the
model for 6 days at a time and observed according to the
pattern for that period. This procedure produced a value for
the 6-day sampling error defined as in (20). After many 6-day
runs of the model, a table of errors was assembled for each
6-day portion of the month. Errors for 30-day averages were
then created by taking five random selections from the table,
one for each period, and averaging. The distribution of
errors thus obtained is what is shown in Figure 9. This
method of proceeding in effect introduces four artificial
discontinuities in the rainfall during the course of a month,
but it is unlikely that these substantially alter the distribution
of errors, since rainfall in the model is not much correlated
beyond 10 or 12 hours.

The errors obtained are consistent with a normal distribu-
tion, as shown by the fit (dots), and easily pass a chi-square
test for goodness of fit.

8. DiscussioN AND CONCLUSIONS

The size of the sampling error we estimate for a TRMM-
like satellite is encouragingly small, less than 10%. If rela-
tively unbiased rain rate retrieval schemes can be devised for
the mission, even if accurate only to a factor of 2 per
footprint (FOV), then sampling error will largely determine
the accuracy of the monthly climatologies provided by the
satellite. The sampling error may be reduced still further by
incorporating information from other satellites.

The error estimate we obtain depends of course on our
assumptions about the statistics of the rain being observed.
These are all based on a few months of GATE statistics from
one 400-km-diameter spot on the globe near the ITCZ.
Rainfall statistics vary with location, and it will be important
to quantify this variation as much as possible. Some infer-
ences may be possible based on recent radar data obtained
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from a number of locations and analyzed by Atlas et al. [this
issue] and Rosenfeld et al. [this issue].

Even the estimates based on GATE data are subject to
considerable uncertainty, as indicated by the sizes of the
error bars in Figures 4 and 6 for quantities that largely
govern the size of the sampling errors. Variations of this
magnitude in the parameters might easily alter the size of £
by as much as a factor of 2.

Our estimates of sampling error have not included the
possibility of considerable aliasing of the results by diurnal
and spatial variation of the statistics within an averaging
box. The satellite offers the unique opportunity of exploring
the diurnal cycle with its non-sun-synchronous orbit (cf.
Figure 1), so that corrections for the diurnal cycle aliasing
will be possible. Bell [19875] has estimated that using TRMM
data alone, and assuming GATE-like statistics, diurnal am-
plitudes of the order of 10% of the mean could be detected by
averaging data over a 600 X 600 km? area and three seasons.

Clearly there is a great need for better knowledge of the
variability of rainfall statistics in space and time and of how
they depend on scale (from that of a rain gauge to thousands
of kilometers). One of the happy outcomes of preparations
for missions such as TRMM may be just this sort of
knowledge.

APPENDIX: ESTIMATE OF RETRIEVAL ERROR
FOR MONTHLY AVERAGES

Suppose that the satellite radiometers have a field of view
(FOV) of the order of 10 km across [Simpson et al., 1988]
and that a retrieval scheme is developed which provides
estimates of the average rain rate within the FOV,

Frov = (1 + €)rrov (AD
where rggy 1s the true rain rate averaged over the FOV, and
we have assumed that the retrieval error can be represented
by a positive definite multiplicative random variable (1 + &),
with () = 0 for an unbiased retrieval scheme.

During 1 month of satellite observations of a 500 x 500
km? area, the satellite will return measurements of N FOVs
from within the area, and the satellite estimate for the
monthly mean will be

N
Riew =— 2 Frov.i (A2)
i=1

Z| -

N
1
rrov, = Z £{'FOV.i
1 i=1

1
N |
I

(A3)

RVZES

The first term on the right-hand side of (A3) is the “‘perfect
instrument”’ estimate of the monthly mean, denoted R in (4).
The second term is the retrieval error. The total error in

retrieved monthly mean rain rate can thus be written
1 2
Eto = | R+ 2 errovi— R (A4)

{

where R denotes the true monthly mean as in (1). If the
retrieval errors are uncorrelated with the sampling error R —
R, this can be written
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Efo = E* + ERer (AS)
where E? is the sampling error (6), and with
1 2
ERer = N > e FOV,i (A6)

i

If we could assume that the retrieval error factor g; is
unbiased and uncorrelated from one FOV to another, then

Efew = N NeDrEoy) (A7)

Let us suppose that retrievals from each FOV are only
accurate to a factor of 2, or (siz) = 1. For a 10-km diameter
FOV, {rkoy) = 5 mm?/h? if we use the GATE statistics in
Figure 4. Note that this estimate is an average over both
rainy and nonrainy FOVs. One can carry out the error
analysis treating separately the rainy and nonrainy FOVs,
but the results are the same.

Near the equator the satellite views a 500 X 500 km? area
about twice per day, or 60 times during a month. Assuming
that it scans about half the area on each pass, we would
estimate N = 0.5 X 60 x (500 km)?/(10 km)? for a 10-km
FOV, or N = 75,000. We would thus estimate the size of the
retrieval error for monthly means to be

ERetr = 0.008 mm/h (A8)

or about 2% of the mean GATE rain rate (0.4 mm/h).
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